
Experiences Using a Meta-Data Based Integration
Infrastructure

Terence Critchlow, Ron Musick, Tom Slezak
Lawrence Livermore National Laboratory (LLNL)

1. Introduction
One of the classic challenges in bio-
informatics has been the integration of
multiple community data sources into a
single, consistent data repository. Over the
years, there have been several attempts to
address this problem. So far, none have been
entirely successful. The task is a daunting
one: integrate large amounts of complex data,
obtained from autonomous, heterogeneous,
distributed data sources which change their
data representation regularly, and present it
in a consistent and intuitive way. On the
surface, this challenge seems similar to the
one faced by industry, and successfully
addressed by data warehousing technology.
Unfortunately, the major difference between
commercial and scientific data – the dynamic
nature of the data sources – makes directly
applying warehousing technology infeasible.
The primary reason is the significant amount
of work required to update the warehouse so
it can incorporate new data whenever a
source changes its data representation. A
related reason is the constant desire to add
new data sources to the warehouse. This
arises from both the scientist’s ongoing quest
to obtain more information about the data,
and the increase in the number of relevant
data sources being made publicly available.
Because of these requirements, a direct
application of data warehousing techniques
to genomics sources results in a system that
is too costly to maintain for an extended
period of time. Thus the trend of new
resources being developed, but quickly
becoming obsolete and being ignored.

One approach to reducing these costs is to
utilize meta-data to automatically generate

components of the warehouse infrastructure.
This approach, however, requires several
difficult questions to be answered: what do
we need to represent? What format should
we use? How do we translate the meta-data
into usable components? and, most
importantly, does using meta-data really save
any time or effort? In this paper, we discuss
our experiences using the meta-data
infrastructure developed as part of the
DataFoundry project at LLNL. First, we
present the DataFoundry architecture,
including both the meta-data representation
and how it is used, in Section 2. Section 3
describes our experiences using the meta-
data infrastructure to integrate two genomic
data sources into our warehouse, outlines
some of the problems initially encountered,
and contrasts the process to the traditional,
manual approach. Finally, we briefly
summarize the current status of the project.

2. Architecture
DataFoundry is based on a meditated data
warehouse architecture, shown in Figure 1, in
which wrappers obtain data from the original
sources and pass it to a mediator. If a source
is relational, the wrapper can easily obtain
the data through SQL commands. However,
if it is a flat file, as is often the case, the
wrapper must first parse the file to obtain the
data. The mediators transform the data from
the source representation into the warehouse
representation, and enter it into the
warehouse. As shown in the figure, and
discussed in Section 3, there may be multiple
mediators populating the warehouse, and a
mediator may be used by more than one
wrapper. To reduce the cost of integrating
new sources, DataFoundry automatically
generates the mediators from meta-data.

DataFoundry uses meta-data to describe four
concepts: abstractions, transformations,
schema, and mappings. Abstractions define
a class hierarchy reflecting the domain
specific concepts contained in the data
sources, including different attribute formats.
For example, the chain abstraction has
attributes length, name, one-character
sequence and three-character sequence.
Transformations define the set of legal
translations between related attributes – for
example between the one-character and
three-character sequence attributes. Schema
meta-data mirrors the target database (i.e.
data warehouse) schema using an extended
relational format. This meta-data is easily
obtained from commercial RDBMSs, but has
been extended to allow both complex object
definitions and comments to be included.
Where appropriate, mappings define
correspondences between abstraction
attributes and schema attributes. Currently,
the meta-data is represented using
Ontolingua, however it is in the process of
being converted to an XML representation.
We expect this new representation will allow
us to leverage the generic resources, tools
and interpreters developed by the XML
community. For example, we may be able to

obtain a generic graphical meta-data browser
and editor, instead of having to develop a
customized one.

We have implemented a mediator generator
program that outputs both a mediator class
and a translation library. The library defines
a C++ class hierarchy, mirroring the
abstraction hierarchy defined in the meta-
data, but extended to include the appropriate
constructors, destructors, get, and put
methods. Because abstractions may define
multi-values attributes, the put methods use
linked list constructs where needed to mimic
this capability. If the attribute requested
through a get method is undefined, the
method will attempt to obtain its value from
one of the other attributes, based on the
transformations defined in the meta-data.
This attempt may trigger multiple
translations if the required attribute(s) is
undefined. The mediator class defines
methods that take high-level objects (i.e.
instances of select classes) and enters them
into the database. This requires performing
transformations when appropriate, iterating
over instances of multi-valued attributes, and
entering the data into the warehouse only if

Wrapper

Mediator

Wrapper

Data
Warehouse

Swiss
Prot dbESTSCoPPDB

Wrapper

Mediator

Figure 1 DataFoundry Architecture

all of the required information has been
provided.

3. Experiences
To date, we have integrated four genomic
data sources into the DataFoundry
warehouse: PDB, SWISS-PROT, SCoP, and
dbEST. The first two were integrated before
the meta-data infrastructure was
implemented, and were thus done manually.
This required writing stand-alone programs
to parse the data source into an intermediate
representation, perform data transformations
and enter the data into the warehouse.
Obviously, this is not scalable because the
maintenance cost of updating these programs
as the source formats change is very high.
The meta-data infrastructure described in the
previous section was used to integrate the
SCoP and dbEST databases. This was both
faster and easier because the class definitions
created by the mediator generator were used
as the parser’s internal data representation,
and the warehouse population code was
automatically generated.

However, during the integration of these two
sources we encountered three interesting
problems with the initial implementation of
the mediator generator. First, proper memory
deallocation, while seemingly very mundane,
proved to be more challenging than
anticipated. The initial implementation
defined destructors that contained memory
leaks and generated segmentation violations.
While these errors were subtle enough to be
overlooked by the test data sets, they had a
serious impact when loading millions of
objects. There were two reasons for these
errors. The first was that the destructors did
not correctly deallocate multi-valued
attributes. Specifically, because they did not
differentiate between list elements and
regular class pointers, they would only delete
the first element in a list. Once identified,
this was easily corrected by modifying the
mediator generator to iterate through list
elements appropriately. The second, more
challenging, issue was that memory was
being deallocated multiple times. This

occurred when a single object was referenced
multiple times by the enclosing object. For
example, in dbEST, the same person object
could be referenced both as an author and as
a map submitter. To address this, the
destructors were modified to record the
memory locations of the object they freed,
and to only release the memory once.

Second, integrating these sources
demonstrated the need to arbitrarily partition
the warehouse to reduce redundancy and
improve performance. Initially, several tables
contained attributes that were null or constant
for all data from a specific source (i.e. the
source didn’ t have any corresponding
attributes so defaults were used). To reduce
the space required for these tables, they were
duplicated under a different name without
these columns. However, this created a
problem with the mediator generator since
the initial implementation assumed that it
would be mapping abstractions onto a single
target schema. Obviously, if arbitrary
partitioning is allowed, that is not the case.
To handle multiple targets the mediator
generator could either create more complex
mediators that associated the appropriate
target schema with individual wrappers, or it
could define multiple mediators. Since a
single mediator that recognized all target
schemata would quickly become
prohibitively complex, we choose to modify
our overall architecture to handle multiple
mediators, one for each target. This was a
dramatic departure from our initial belief that
a single mediator would be sufficient for all
of the source wrappers, and required
updating our meta-data repository to contain
mapping and schema components for each
target (the abstraction and translation
components do not depend on the target).

The third problem, which has not yet been
completely addressed, is how to propagate
in-place updates of a data source to the
warehouse. Since an in-place update
modifies data that has already been entered
into the warehouse, simply entering the new
data into the warehouse would violate
integrity constraints and cause user

confusion. The easiest way to perform this
update, for a small number of objects, is to
delete the entire entry and insert the new data
into the database. However, this requires
being able to identify and remove all data
referenced by only that entry. This turns out
to be a complicated task since some objects,
such as authors, may be referenced by
multiple entries, and determining whether the
modified entry is the only reference can be
difficult. Currently, the delete method is
manually defined, but we believe the meta-
data contains sufficient information to
automatically generate it, if sufficient time is
invested updating the mediator generator.

Despite these difficulties, this approach has
great promise. Table 1 compares the time
required to integrate SCoP into our
warehouse using our meta-data based
approach with the time it would take to
manually integrate it. As the table shows,
our approach significantly reduced the time
required to perform the integration. As
expected, we saved a considerable amount of
time because updating the meta-data was
significantly easier than writing the mediator
from scratch. A surprising result was the
amount of time saved by using the class
hierarchy from the translation library as the
parser’s internal representation instead of
creating a customized definition. In effect,
the time spent updating the meta-data could
be viewed as being spent defining the class
representation. However, since the meta-data
definition is at a much higher level (i.e. no
need to write destructors), and it builds upon
the existing meta-data, it didn’ t take as long
as defining the classes in C++ would have.
While we have not performed a similar

comparison for the integration of dbEST, in
part because it is a significantly more
complex data source, the overall time
reduction would probably not be as
significant as it was for SCoP (it would be
dominated by shared tasks such as
understanding the domain, identifying the
schema, defining the parser, etc.). However,
we believe that there would still be
significant savings for the portions of the
process affected by the meta-data
infrastructure.

4. Conclusions
A data warehouse that presents data from
many of the genomics community data
sources in a consistent, intuitive fashion has
long been a goal of bioinformatics.
Unfortunately, it is one of the goals that has
not yet been achieved. One of the major
problems encountered by previous attempts
has been the high cost of creating and
maintaining a warehouse in a dynamic
environment.

In this short paper we have outlined a meta-
data based approach to integrating data
sources that begins to address this problem.
We have used this infrastructure to
successfully integrate new sources into an
existing warehouse in substantially less time
than would have traditionally been required –
and the resulting mediators are more
maintainable than the traditionally defined
ones would have been.

Work performed under the auspices of the U.S. DOE by
LLNL under contract No. W-7405-ENG-48

Table 1 Integration Results

Activity \ Integration Style Manual Meta-Data Diff % Diff
Understanding SCoP 2.0 2.0 0.0 0%
Writing wrapper 4.5 2.5 2.0 45%
Modifying schema 0.5 0.5 0.0 0%
Writing mediator 4.0 N/A 4.0 --
Modifying meta-data N/A 1.0 (1.0) --
Total time (in days) 11.0 6.0 5.0 45%

